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The international Genetically 
Engineered Machine competi-
tion (iGEM) is the world‘s biggest 
competition in synthetic biology. 
Here, students from all over the 
world can engage in research 
trying to solve real and pressing 
problems of society at large and 
push the boundaries of our un-
derstanding of synthetic biolo-
gy, with diverse projects ranging 
from ields like environment pro-
tection to disease therapeutics. 

Every year, numerous teams gat-
her at the Hynes Veterans Memo-
rial Convention Center in Boston 
to present their work to some of 
the greatest living minds in the 

life sciences and mingle with ot-
her biotechnology enthusiasts 
and compete for the Grand Pri-
ze of iGEM – the BioBrick trophy.

Thus, iGEM provides a platform 
enabling young scientists to le-
arn crucial aspects of research 
early on in their careers and helps 
to promote the beneicial use 
of synthetic biology in society.

You can ind in this Proposal a 
detailed description about us, 
our project, our further enga-
gement and our contact details.
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At a glance
This year, we aim to extend the capabilities of synthetic biology 
by creating a modular RNA-based toolbox for runtime bioengi-
neering inside living cells. We harness the broad variety of speci-
ic RNA-protein interactions found in nature and combine it with 
cutting-edge machine learning towards the completion of our goal.

Timelime:

March 1st - May 1 st: 

• Online Corona School: We help High-School Students 
graduating this year through Online Courses

• Drylab Introduction: We start designing ribozymes, prote-
in-RNA  binding pairs and model regulatory networks

April 30th: Registration

May 1st: Labwork Begins

Labwork & Outreach
• We plan to devel a toolbox for the scientiic community-

and applications, like CAS-less gene editing
• Outreach: We are planning to host a Science Slam and 

several events with experts

October 28th: 

Finishing Results, 
Collection

October 29th: 

Result Presentation 
in Boston



Wetlab

Our goal is to create a dy-
namic toolbox providing the 
tools for RNA and protein me-
diated cell regulation. There-
by we want to tackle the fol-
lowing modular interactions:

1. RNA-guided RNA modiica-
tion

2. RNA-RNA interaction
3. RNA-protein interaction
4. Protein-protein interaction

These modules can be used to 
implement Cas-less gene edit-
ing and various tools for indust-
rial and therapeutic applications.

Drylab

Designing functional nuc-
leic acids is far from trivial. To 
reach our goals, we aim to 
use powerful machine-lear-
ning techniques towards ratio-
nal design of functional RNAs:

1. Designing RNA secondary 
structure

2. Imitation learning for design
3. Designing trans-splicing ribo-

zymes
4. Generating protein-RNA bin-

ding pairs
5. Modelling dynamic regulatory 

networks

iGEM 2020Team Heidelberg 2017 Team Heidelberg 2020
Team Heidelberg 2017 iGEM 2020

CASless CRISPR
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Heidelberg has a long tradition in 
iGEM. Since 2008, Heidelberg’s 
iGEM teams have contributed 
many successful projects to the 
competition and, among nume-
rous side prizes, won the Grand 
Prize in 2013 & 2014 and reached 
the 3rd place in 2015 & 2017. 
With diverse projects like “Ring of 
Fire”, a project about circularized 
proteins, or “The Phage and the 
Furious”, a project around phage 
assisted evolution, Heidelberg 
has earned a reputation for 
innovative projects especially in 
the foundational advance sector. 

A successful past, that we strive 
to continue once more this year.

We are iGEM Heidelberg, 17 
young students from Heidel-
berg University with a sha-
red passion for synthetic bio-
logy and a common ambition 
to participate in the iGEM 2020 
competition. Consisting of 
members with diverse academic 

backgrounds like physics, che-
mistry, biology and biotech-
nology, we cover a broad 
spectrum of theoretical know-
ledge and practical know-how. 

Our team is well equipped to 
navigate the highly interdiscipli-
nary landscape of modern biolo-
gy. In the drylab, we have team 
members with years of expertise 
in practical computer science 
and experience with machine 
learning, enabling us to 
develop reliable model-
ling software for our project.   

Our research group is completed 
by two veterans of synthetic bio-
logy: our advisors Prof. Dr. Wöll 
and Prof. Dr. Wade, two reliable 
partners that can help us to ind 
new paths if we get stuck in dead 
ends. Together we make up a 
strong team that is well prepared 
for the ierce challenges of iGEM. 

About Us: Now and 

in the Past



The Phage and 

the Furious

- iGEM Heidelberg 2017

Second Runner Up

The Ring of Fire

- iGEM Heidelberg 2014

Grand Prize Winner

Fantastic Yeasts and How to Evolve Them

- iGEM Heidelberg 2019
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1. MODULAR RNA-GUIDED RNA MODIFICATION

2. MODULAR RNA-RNA INTERACTION

3. MODULAR RNA-PROTEIN INTERACTION

4. MODULAR PROTEIN-PROTEIN INTERACTION

5. MODULAR RNA-PROTEIN INTERACTION



Our work in the 

Wetlab
An introduction

Cells are wonderfully compli-
cated systems that are the fabric 
which makes up all living crea-
tures. Several decades of studies 
have been spent on determin-
ing the key levels of regulation 
that govern processes that make 
cells grow, reproduce and in-
teract with the environment.

As cell biology has come of age, 
every 10th grader knows full well 
that all the information about a 
cell’s building blocks is stored in its 
genome – a blueprint, written in 
the form of DNA. For creating any 
given protein, the cell irst needs 
to copy the information from the 
gene to an RNA and then use the 
RNA and the ribosomes – cellu-
lar protein factories made up of 
both protein and RNA – to create 
the desired protein. The cell con-
trols the processes at all levels 
and can intervene using RNA, 

proteins or complexes of both. 

From the very beginning of cell 
biology as a science, research-
ers tried not only to understand 
what happens in the cell and 
what rules it is governed by, but 
also to harness its power to con-
trol the processes themselves 
and redirect them to do their bid-
ding. In the spirit of Feynman’s 
‘What I cannot create, I do not 
understand’, researchers modi-
ied existing genes, created new 
ones and played around with 
controlling their activation and 
repression. Engineering gene 
regulatory pathways allowed for 
creation of organisms extremely 
tolerant to harsh environments, 
or cells producing anything from 
ethanol to biofuel. All of them 
are actively used in industry to 
feed and sustain our vastly grow-
ing population and economy. 
This desire, to rationally design 

new biological systems to stand 
against today’s problems, serves 
the needs of humankind, and 
deepening our understanding 



through this creative process is 
what has been the driving force 
of synthetic biology to date. 

The top labs, which conduct cut-
ting edge research, are constant-
ly coming up with new ideas of 
what other organisms or regula-
tory networks to use to achieve 
the common goal. A recent de-
velopment, that is just emerging 
in the ield, is the regulation of 
organisms not only through var-
ious modiications at the DNA 
level, but at the RNA and protein 
level. As it stands, this aspect of 
gene regulatory networks has 
been left almost criminally un-
derused, and just by a quick 
glance, one can see all the raw 
potential and unused possibilities 
to be found lying there, ready to 
be picked up by a curious mind. 

This is something we, as a 
young and motivated iGEM 
team, want to dedicate our work 
to during this summer term. 
Our goal is to create a dynamic 
toolbox providing the tools for 
RNA and protein mediated cell 
regulation. Thereby, we want to 
tackle the following interactions: 

 

1. Modular RNA-guided RNA 

modification

2. Modular RNA-RNA interac-

tion

3. Modular RNA-protein inter-

action

4. Modular protein-protein in-

teraction

5. Modular RNA-protein inter-

action

Here a few nice applications for 
such systems: 

Delivery of complex regulatory 

proteins into cells.

A way to deliver large proteins 
in the form of their subunits with 
a later assembly into a functional 
protein is a crucial obstacle in 
bringing such systems as Prime 
editors to the medical and bio-
tech market. These proteins are 
used for controllable and accu-
rate editing of DNA in the cells. 
Thus, they present a possibility 
for healing some of the known 
genetic disorders (Anzalone 
et al. 2019). Sadly, the proteins 
themselves are so large, that a 
delivery of the entire complex 
into the cell is nearly impos-
sible (Domenger and Grimm 
2019). Division of the proteins 
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into subunits and coupling them 
with RNA linkers, which will 
navigate the correct assembly 
(Truong et al. 2015) after the suc-
cessful delivery of the parts into 
the cell, might solve this issue. 

CRISPR without a Cas

CRISPR Cas9 systems are valued 
for their speciicity and eiciency 
in genome editing. Furthermore, 
the Cas part of the system is also 
actively used for various biologi-
cal assays which require delivery 
of regulatory elements to a spe-
ciic point in the genome. Nev-
ertheless, Cas9 has a serious dis-
advantage - its size. Consisting 
out of 1053 AA and with a weight 
around 123 kDa (Hsu et al. 2014), 
this protein cannot access some 
heterochromatic areas, espe-
cially when it is linked to an-
other transcriptional factor (Qi 
et al. 2013). Using RNA, only the 
guide RNA with an RNA stabi-
lizing construct instead of the 
large Cas-protein would solve 
the problem providing a similar 
accuracy of the system. Whereas 
this may sound promising in the-
ory, in practice, designing such a 
complex functional RNA would 
constitute a daunting task. Fortu-

nately, nature provides a similar 
functionality via RNA·DNA–DNA 

triplex formation – a process, 
by which single-stranded RNA 
(ssRNA) forms high-ainity (Kd 
< 200 nM) sequence-speciic 
binding interactions with double 
stranded DNA (dsDNA), efec-
tively performing the function of 
a DNA-binding protein (Kunkler 
et al. 2019). The engineering po-
tential of RNA·DNA–DNA triple 
helices to date is vastly under-
explored in synthetic biology, 
partly due to the fact that the 
energetics of triplex formation 
were only fully elucidated in late 
2019 (Kunkler et al. 2019). We 
plan to harness this underused 
tool to provide all the beneits 
of CRISPR-based transcription-
al regulation – compact, simple 
and without the need for Cas. 

Combinatorial metabolic engi-

neering

In the last few years, a few com-
binatorial systems for metabolic 
engineering have been present-
ed in the synbio community. A 
prominent example is the or-
thogonal trifunctional CRISPR 

protein system. This system 
provides separate activational, 



interfering and gene-deleting 
complexes based on Cases (Lian 
et al. 2017). This is a novel system 
that has already proven to be a 
valuable tool for basic research. 
Nevertheless, it has one major 
disadvantage: the Cases, which 
are comparatively large (see 
above). Also, the fact that each 
tool requires an own speciic Cas 
severely limits the experiment 
one can perform with this type 
of system. Substituting the Cas 
with a ribozyme might solve 
the problem by making them 
smaller without losing the spec-
iicity. Making them modular, 
such that the same RNA protein 
complex could switch functions 
through ligand binding and the 
addition and following binding 
of the corresponding functional 
domain, might be the solution.

For our project, our goal is 
to produce a tunable tool-
box for the key-interactions in 
the presented scenarios with 
the corresponding wetlab pro-
tocols, necessary assays and 
proof of concept experiments. 

We are planning to start with 
the characterization of diferent 
available RNA-based linkers and 

probing simple speciic RNA-pro-
tein complex engineering. When 
solving these tasks (as well as 
making the corresponding DNA 
sequences biobrick compatible, 
we will go for tethering experi-
ments with functional proteins 
(transcriptional activators, re-
pressors to DNA or luorescent 
proteins to each other - FRET 
and quenching). Similar experi-
ments will also be performed us-
ing the engineered triple-helix. 

All the steps will be performed 
in constant communication 
with the drylab, improving the 
computational models based 
on our experimental results 
and applying the outcoming 
changes to the wetlab planning. 
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Designing RNA secondary 

structure and function

As with proteins, RNA structure is 
intimately related to its function 
– speciically, binding or catalyt-
ic bases need to be aligned prop-
erly for a given RNA to realize 
its function (Lorenz et al. 2011). 
Therefore, the ability to design 
RNA sequences folding into a 
speciied structure is a necessary 
prerequisite towards design-
ing functional, catalytic RNAs 
for a given purpose. While RNA 
structure prediction is much less 
computationally expensive and 
hard to get right, than its protein 
counterpart, its inverse problem 
of RNA design is as daunting as 
ixed-backbone protein design 
(Runte et al. 2019). While RNA 

design given a ixed second-
ary structure is feasible using a 
number of simulated anneal-
ing or genetic algorithm-based 
approaches, these approaches 
rely on eicient samplers of vi-

able RNA sequences as well 
as multiple evaluations of the 
forward problem. This makes 
them computationally inei-
cient and does not guarantee 
to return reasonable results in 
inite time (Lorenz et al. 2011).

We plan to apply machine learn-

ing to implement eicient sam-
plers for RNA sequence condi-
tioned on secondary structure. 
This is a highly non-trivial ma-
chine learning problem, as the 
conditional distribution of se-
quences is highly multimodal 
since multiple RNA sequences 
may fold to the same secondary 
structure. Furthermore, a good 
model should capture this mul-
timodality and return diverse se-
quences for any target secondary 
structure (Runge et al. 2019). Ad-
ditionally, RNA sequences show 
many of the same properties 
that make training powerful lan-
guage models a highly non-triv-
ial problem. Thus, they require 

Our work in the 

Drylab



similar algorithmic and architec-
tural considerations for machine 
learning to be successful (Shi et 
al. 2019, Runge et al. 2019, Ingra-
ham et al. 2019). Both supervised 
learning (Shi et al. 2018) and re-
inforcement learning (Eastman 
et al. 2018, Runge et al. 2019) of 
policies for structure-condition-
al RNA design have previously 
been explored and shown to 
outperform classical approaches 
to the design problem. Despite 
being successful, both methods 
fall short of a complete solution 
for RNA inverse folding. While 
reinforcement learning learns 
the design rules of RNA without 
human interaction, training is 
unstable and data intensive. Su-
pervised learning, on the other 
hand, needs a large corpus of 
human-generated and labelled 
data to be successful while al-
lowing for stable and data-ei-
cient training. Furthermore, both 
approaches are currently limited 
to single-state RNA design.

To address these limitations, im-
itation learning provides a prin-
cipled framework for RNA de-
sign learning in a data-eicient 
manner, without the need for 
human intervention (Ghosh et 

al. 2019, Singh et al. 2020). We 
plan to train self-imitating pol-
icies towards realising eicient 
human-level, multi-state RNA de-
sign. This allows us to design and 
test our RNA-based constructs 
at unprecedented throughput.

Diferentiable Programming

In recent years, supervised learn-
ing of (possibly deep) neural net-
works has brought forth many 
astonishing advances in compu-
tational approaches to various 
scientiic ields. Most recently, 
neural network models providing 
good solutions to both the pro-
tein folding (Senior et al. 2020) 
and design problems (Ingraham 
et al. 2019) have advanced struc-
tural studies of proteins by leaps 
and bounds. In this context, neu-

ral network are nothing but a 
special case of the more general 
computational paradigm of dif-
ferentiable programming (Huot 
et al. 2020, Elliot 2018), allowing 
programs to be trained for exam-
ple via gradient descent (Kingma 
and Ba 2014). Diferentiable pro-
gramming treats programs as 
compositions of parameterised 
diferentiable functions. These 
functions have a set of modii-



able parameters bundled with 
the information of how to com-
pute their derivative for gradi-
ent-based optimization. The 
class of programs representable 
by diferentiable functions is 
much larger than the matrix 
products and convolutions mak-
ing up the usual neural network 
and thus allows for training pro-
grams with complex logic. This 
is important when processing 
non-standard types of data and 
learning parametric subroutines 
of larger programs as commonly 
needed in the context of protein 
and RNA bioinformatics (Lorenz 
et al. 2011). We aim to use difer-
entiable programming to learn 
powerful samplers for RNA-de-
sign procedures, working as 
part of classical search routines.

Imitation Learning

As human beings, we tend to 
learn many skills by demonstra-
tion. A parent or a teacher shows 
us how to complete a task by 
performing it in front of our eyes 
and we learn by imitating their 
movements. A similar line of 
thinking when applied to train-
ing machines is known as imita-
tion learning. A model is trained 

from a set of expert demonstra-

tions of a task by standard su-
pervised learning (Ghosh et al. 
2019, Kumar et al. 2019, Singh 
et al. 2020). To date, imitation 
learning has successfully been 
applied to a variety of robotics 
tasks (Singh et al. 2020) as well 
as to jump-start learning in chal-
lenging environments, where an 
agent would struggle to learn 
without irst experiencing ex-
pert demonstrations (Silver et al. 
2017, Vinyals et al. 2019). Notable 
examples of the latter include 
AlphaGo (Silver et al. 2017) – 
learning to play the game of Go 
with superhuman prowess – as 
well as AlphaStar (Vinyals et al. 
2019) – learning to beat profes-
sional players in StarCraft II, one 
of the most popular, competitive 
and hardest-to-master real-time 
strategy games. By itself, imita-
tion learning sufers from a num-
ber of fatal laws. Firstly, for com-
plex problems, it requires a large 
amount of expert demonstra-
tions; Secondly, those demon-
strations need to be close to 
lawless for the algorithm to be 
able to learn an optimal policy 
(Ghosh et al. 2019, Kumar et al. 
2019). Fortunately, we can refor-
mulate imitation learning such 



that we can easily sample new 
perfect demonstrations of a giv-
en task. The key observation is 
the following: A bad demonstra-
tion for one task might be a per-
fect demonstration of another. 
In our case, an RNA sequence 
misfolding badly with respect 
to some target structure pro-
vides a perfect demonstration 
for the goal being its own opti-
mal secondary structure. This 
approach of self-supervised im-
itation learning has very recent-
ly attracted interest as a more 
stable and data-eicient alterna-
tive to standard reinforcement 
learning (Ghosh et al. 2019, Ku-
mar et al. 2019, Srivastava et al. 
2019, Singh et al. 2020). We aim 
to use self-supervised imitation 
learning to learn strong policies 
for the constrained RNA design 
problem, as a means towards 
more powerful and eicient de-
sign of functional nucleic acids.

Designing trans-splicing ribo-

zymes

As mentioned above, one of the 
major problems of Cas9 is that 
it is far too large to be delivered 
into human cells directly. One 
solution is viral delivery part by 

part, which increases the spec-
iicity but drastically lowers the 
efectiveness. A diferent ap-
proach would be to avoid Cas9 
and use a more compact alter-
native instead – in our case, 
functional RNA. As shown in 
multiple publications (Ikawa and 
Matsumura 2018), RNA is capa-
ble of manipulating other RNA 
and DNA in living cells. There are 
several advantages of RNA based 
manipulations over Cas9. First, it 
is more amenable to computa-
tional design due to its simpler 
structure. Second,RNA-based 
manipulations show their efects 
on phenotype faster as they by-
pass transcription and in some 
cases translation. Third, the ap-
plied changes are mostly on the 
level of RNA and only on DNA 
if explicitly required . This elimi-
nates the possibility of introduc-
ing persistent errors via of-tar-
get editing and further endows 
editing with a speed boost since 
there is no need for transcription. 

Our claim in this aspect is to de-
velop a state-of-the-art system 
for designing speciic trans-splic-
ing ribozymes. We are coni-
dent this is feasible since it was 
already done successfully with 
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classical methods and similar 
methods have been successfully 
implemented for protein design 
(Ingraham et al. 2019). Classical 
approaches are extremely slow, 
and to date there has been no 
approach to speed them up us-
ing machine learning. Bringing 
together the established knowl-
edge gathered in the land of pro-
teins, to the new born realm of 
RNA and machine learning will 
yield tasteful low hanging fruit 
of progress and improvement.

Designing protein-RNA bind-

ing pairs 

Our very project depends on our 
ability to create speciic, high-af-
inity interactions between cho-
sen proteins and RNAs. Without 
good protein-RNA binding pairs, 
all could be lost. But we need not 
fear for our endeavour, for as is 
the case with many things, na-
ture provides. In their bid to cor-
rectly pack their components 
and genetic information, many 
viruses have evolved speciic 
protein-RNA interactions, tether-
ing RNAs of interest to viral coat 
proteins. Many of them have 
unique and orthogonal RNA se-
quences and structure specii-

cities (Katz et al. 2019, Adamala 
et al. 2016). While nature’s array 
of binding RNAs and their pro-
tein partners is certainly impres-
sive, as synthetic biologists, we 
want to go beyond its conines. 
More precisely, we wish to ap-
ply diferentiable programming 
in order to discover novel, or-

thogonal protein-RNA binding 

pairs. To this end, we make use 
of geometric deep learning – a 
framework for machine learning 
on spatially structured data – (Wu 
et al. 2019) to learn representa-
tions of protein-RNA interfaces. 
The  goal is a virtual screening of 
various RNA stem-loops against 
a common protein structure. If 
time permits, a supplementary 
high-throughput screening of a 
library of random RNAs against 
mutated proteins will be im-
plemented to provide addition-
al data on functional RNA-pro-
tein interfaces (Katz et al. 2019).

Modelling dynamic gene regu-

latory networks

Gene-regulatory networks in-
volving RNA-based regulation 
are complex and diverse in be-
haviour. Their RNA-logic com-
ponents may stochastically fold 



into diferent secondary struc-
tures, endowing them with dif-
ferent functions. Successfully 
designing and deploying such 
networks is feasible, but usual-
ly requires a number of design-
clone-test cycles until the reg-
ulatory circuits perform their 
desired function within reasona-
ble parameters. As with simpler 
regulatory networks, modelling 
them helps to keep the num-
ber of design cycles minimal. A 
number of non-obvious, bad de-
signs may be discarded by pre-
liminary model checking. As our 
project is very time-sensitive, 
within the rigid time frame of 
the iGEM competition, we abso-
lutely require good modelling to 
keep the number of design cy-
cles minimal. Therefore, we plan 
to model gene regulatory net-
works and RNA secondary struc-
ture in the ensemble formula-
tion, to construct probabilistic 

models of gene regulation un-
der multi-state RNA control. 
These models help us to design 
and model-check such net-
works and subsequently accel-
erating progress in our project.
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Reaching the 

people - Human 

Practices
Apart from our laboratory work, 
we want to create a dialogue with 
people yet to be interested in the 
marvelous realms of life sciences, 
make research accessible and 
help to spread excitement for 
synthetic biology around the 
world. In this spirit, we are plan-
ning several projects to reach 
numerous groups among society. 
To quicken the interest of chil-
dren, we will give lessons in fun-
damental molecular and syn-
thetic biology at local schools. 

Furthermore, we are organi-
sing a Science-Slam in Heidel-
berg, where we will invite other 
iGEM-Teams to excite people 
from Heidelberg with their ideas. 
We also plan to invite a spea-
ker to Heidelberg University to 
catch the attention of biology 
greenhorns. Through the sup-
port of „Wissenschaft im Dialog 

gGmbH“, we are able to promote 
our project publicly through their 
social media channels and an 
interview on their platform „wis-
senschaftskommunikation.de“. 

Finally, to address the cur-
rent and controversial political 
aspects of synthetic biology 
and to ind out more about the 
research other groups are un-
dertaking, we are reaching out 
to the minister for science in Ba-
den-Württemberg, Theresia Bau-
er, and further researchers for in-

terviews and exchanging ideas.

https://www.wissenschaft-im-dialog.de/
https://www.wissenschaft-im-dialog.de/
http://wissenschaftskommunikation.de
http://wissenschaftskommunikation.de


5th of June, Marstallhof 3, 
69117 Heidelberg (Marstall 
Cafe) - Reminder for my-
self: Invite all friends and 
sponsors!

Science 

Slam



Contact us. 
  contact(at)igem-heidelberg.com

  igem-heidelberg.com

  Universität Heidelberg
  c/o Prof. Stefan Wöll 
  Im Neuenheimer Feld 364     
  69120 Heidelberg

Please do not hesitate to contact us directly via 

telephone or via digital services for questions or 

discussing possibilities.  

mailto:contact%40igem-heidelberg.com?subject=
http://igem-heidelberg.com

